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Abstract. We calculate the partition functions of the affine Pasquier models on the cylinder in
the continuum limit. We show that the partition function of any affine model may be expressed
in terms of the orbit structure of an affine Coxeter element of the Weyl group associated with the
defining graph of the model. Some of the consequences of this geometric relationship are explored.

1. Introduction and motivation

The purpose of this paper is to find a general geometric expression for the partition functions
of the affine Pasquier models on the cylinder. In so doing we find expressions for the partition
functions of the models which are currently missing from the literature. In this section we
present the problem and take the opportunity to introduce some notation.

The Pasquier models [19] are particular examples of graph-lattice models. They are
defined on the square lattice with a height or spin function σ assigning to each lattice vertex
values within the set of nodes of a graph G. The values of the heights of two neighbouring
vertices are restricted so that they are adjacent nodes of G. This restriction is encoded by the
adjacency matrix of the graph, which we shall write as Gab. The affine Pasquier models that
we consider have graphs restricted to the set given in figure 1. These graphs (or, to be more
precise, their adjacency matrices) are known to have highest eigenvalue β ≡ β(0) = 2. The
models they provide are believed to be integrable and, at criticality, provide conformal theories
with central charge c = 1 (see [20] and [11]). These graphs also arise in the classification of the
untwisted affine Kac–Moody algebras just as the classical (non-affine)ADE Dynkin diagrams
appear within the classification of Lie algebras. In fact each such untwisted affine Kac–Moody
algebra ĝ is related to an underlying Lie algebra g known as its horizontal subalgebra. This
relationship is reflected in the diagrams. Removing the ‘affine node’ labelled 0 (see figure 1)
from the graph X̂n (say) associated with the affine algebra ĝ, one obtains the graph Xn of the
horizontal subalgebra g.

We will examine models with a cylindrical rather than toroidal geometry. If opposing
edges of a rectangular M × L lattice are identified so that the temporal direction is periodic
then the partition function of the resultant model may be written in the continuum limit as [2]

Z(G;a,b)(q) =
∑
n∈J

�(G;a,b)
n χ n2

4
(q) (1.1)

where theχn2
4
(q) are c = 1 Virasoro characters, q is the modular parameter and J is some index

set labelling the representations of the single Virasoro algebra present in the theory. Note that
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Figure 1. The (untwisted) affine graphs and their exponents. Each graph X̂n has n + 1 nodes.

to specify a model one must state the graph which defines its bulk behaviour and the boundary
conditions on either end of the cylinder. Therefore we denote a model by (G; a, b). In this
paper we are only interested in the simple boundary conditions where the height function σ is
held to constant values a, b ∈ G on each end of the cylinder. We will denote by � the discrete
lattice on the cylinder.

The role played by the classical (i.e. non-affine) Coxeter element in the partition functions
of the classical Pasquier models was first demonstrated by Dorey [6]. The Coxeter element
is any one of a class of special elements within the Weyl group of reflections defined by the
geometry of the simple roots. A Coxeter element is defined as the product of all the reflections
associated with the simple roots (see [14] for a good overview). In practice we will choose a
particular Coxeter element. If we exclude the graphs of Â type with odd numbers of nodes
from our analysis, it follows from the Z2-colourability of the remaining affine graphs that the
roots of an affine Kac–Moody algebra may be disjointly partitioned into two sets of mutually
orthogonal roots �1 and �2. We fix notation by requiring α0 to be orthogonal to the roots of
�2. Define the involutions ω1 and ω2 as the products of the reflections associated with the
sets �1 and �2 of simple roots respectively. The exact ordering of the roots within either of
these sets is irrelevant as they are mutually orthogonal. Then the Steinberg-ordered Coxeter
element [24] is defined as

ω
def= ω2 ω1. (1.2)

It is this particular choice of Coxeter element that we will find easiest to manipulate.
The generalization to the affine Coxeter element is non-trivial, however. The order of (any

of) the Coxeter elements is known as the Coxeter number. In the affine cases, this order is
infinite and an analogous number known as the affine Coxeter number h (finite) takes its place
in expressions for eigenvalues and eigenvectors of the adjacency matrix. (We will often find it
convenient to label graphs and their eigenvectors and eigenvalues with this number, in which
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case we will do so by placing square parentheses around the Coxeter number, G[h] for example.)
The affine Weyl group Ŵ contains translations as well as ordinary reflections. We shall see
that the action of the affine Coxeter element can be thought of as the action of something not
unlike the action of the Coxeter element in the root space of the underlying horizontal algebra
(this action has finite order h) combined with the additional effect produced by a translation.
There are also ‘imaginary’ roots, pointwise-invariant under Ŵ complicating the geometry. A
good overview of the relationship between affine Weyl groups and Kac–Moody algebras may
be found in [10].

Dorey [6] demonstrated that the coefficients �(G;a,b)
n in the expression analogous to (1.1)

for the non-affine models (c < 1) had a simple geometric interpretation in terms of the orbit
structure of the (non-affine analogue of the) Coxeter element (1.2). We extend this result to
the affine models (c = 1) and in so doing also provide an alternative method of proof of the
result for the non-affine cases. We will also be interested in the geometric consequences of
the relationship mentioned earlier between an (untwisted) affine Kac–Moody algebra and its
underlying Lie algebra.

We begin in the next section by calculating the coefficients �
(Â[2h];a,b)
n for the model

(Â[2h]; a, b). In section 3 we construct affine generalizations of intertwiners which will relate
the remaining Â-, D̂- and Ê-based models to this basic model. We show that all the partition
functions have a single algebraic form in section 4. In section 5, we rewrite this form in terms
of the geometry of the Weyl group of reflections and, finally, in section 6 we explore some of
the consequences of this geometric interpretation.

2. The partition function of the model (Ân; a, b)

We consider first the model (A∞; a, b). The height function, σ , of this model is the discrete
version of a continuous free field variable ϕ ∈ R. Up to rescaling of ϕ, this theory has partition
function

Z(A∞;a,b)(M,L) =
∫

ϕ(a0 ,0)=a

ϕ(a0 ,L)=b

ϕ(a0+M,a1)=ϕ(a0 ,a1)

Dϕ exp

{
− πg

4

∫
d2 a|∇ϕ(a0, a1)|2

}
(2.1)

where g = 1 [21]. This model is well known in the literature to provide a c = 1 conformal
field theory (see e.g. [12]). Denote by d the lattice spacing. The equivalence,

lim
d→0

M,L→∞
M/Lfixed

Z(A∞;a,b)
� = Z(A∞;a,b)(M,L) (2.2)

of the lattice model in the continuum limit to the Gaussian or Coulomb-gas model (2.1)
is established by examining the renormalization-group flows of the so-called (unrestricted)
solid-on-solid model mapped onto the A∞ model via a set of transformations [18].

The partition function (2.1) is calculated by splitting ϕ(a0, a1) = ϕ0(a
0, a1) + ϕ1(a

1).
The field ϕ1(a

1) is the classical solution to the equations of motion. The field ϕ0 is periodic
in the time direction and satisfies the boundary conditions ϕ0(a

0, 0) = ϕ0(a
0, L) = 0. By

zeta-regularization [21],∫
ϕ0(a

0 ,0)=ϕ0(a
0 ,L)=0

ϕ0(a
0+M,a1)=ϕ0(a

0 ,a1)

Dϕ0 exp

{
− πg

4

∫
d2a|∇ϕ0|2

}
= η−1(q) (2.3)

with q ≡ exp(−Mπ/L), the modular parameter.
The classical field ϕ1(a

1) = (b − a) a1/L [21], so (2.1) is

Z(A∞;a,b)(q) = η−1(q) exp

{
−πg

4

(
b − a

L

)2

ML

}
= η−1(q) qg (b−a)2/4. (2.4)
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The model is (manifestly) invariant under shifts in the boundary conditions (a, b) →
(a + c, b + c), so we set ε ≡ b − a; thus, setting also g = 1,

Z(A∞;0,ε)(q) = η−1(q) qε
2/4. (2.5)

By graph symmetry, the partition function of the model (Â2h−1; a, b) is also invariant
under ‘translation’ of the boundary conditions. We again rewrite the boundary condition
as ε ≡ b − a. The continuum limit of the partition function is found by noting that the height
function σ is here the discrete version of the continuous field ϕ ∈ R/2hZ; i.e. the field ϕ

of (2.1) is now compactified on a circle of circumference 2h [9]. With a suitable rescaling of
the field ϕ, the continuum partition function will be given by (2.1), again with g = 1. The
partition function (2.1) is evaluated by again splitting ϕ(a0, a1) = ϕ0(a

0, a1) + ϕ1(a
1). The

field ϕ0(a
0, a1) is as before and provides the contribution (2.3). The classical field ϕ1(a

1) is
modified to identify the boundary condition ε with ε + 2nh for n ∈ Z. Thus

ϕ1(a
1) ≡

∞∑
n=−∞

ϕ
(n)
1 (a1) (2.6)

where ϕ(n)
1 (a1) is the classical field in the nth instanton sector and is

ϕ
(n)
1 (a1) = (ε + 2nh)

a1

L
. (2.7)

Thus the continuum partition function of the model (Â2h−1; 0, ε) is given by the result (2.5)
with the identification ε ≡ ε + 2h, i.e.

Z(Â2h−1;0,ε)(q) = η−1(q)
∑
n∈Z

q
(ε+2nh)2

4 . (2.8)

The partition functions (2.5) and (2.8) can be placed in the form (1.1) by noting that

η−1(q)q
n2

4 =
∞∑
p=0

χ (n+2p)2

4
(q) (2.9)

where n is a positive integer and χn2
4
(q) are degenerate c = 1 characters (refer to [7] and [15]

for details). If we define the generalized semi-infinite Kronecker comb as

#(a1,...,ak)
n,ε ≡

∞∑
m1,...,mk=0

δn,ε+
∑k

i=1 mi ai
(2.10)

where δ is the usual Kronecker δ, then (2.5) is of the form (1.1) with

�(A∞;0,ε)
n = #(2)

n,ε. (2.11)

Similarly, defining ε ≡ ε + 2nh, it is an easy exercise to see that (2.8) is of the form (1.1) with

�
(Â[2h];0,ε)
n = #

(2,2h)
n,2h−ε + #(2,2h)

n,ε . (2.12)

We could deduce the partition functions of the models based upon the odd cycles, Â[2h−1], by
substituting 2h �→ 2h − 1. However the Â[2h]-based models form a kind of ‘basis set’ as we
shall see below.
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3. Intertwiners between affine models

We now have an expression (2.12) for the partition function of the models of the form
(Â[2h]; 0, ε). We construct the partition functions of D̂- and Ê-based models and of the odd
cycle Â models by re-expressing these models, still on the finite lattice �, in terms of partition
functions of Â[2h]-based models. In other words, we construct the intertwiners interrelating
the models. These relationships between the models continue to hold in the continuum limit
and we then may use (2.12) to construct explicit partition functions for the Â[2h−1]-, D̂- and
Ê-based cases.

We wish to find coefficients Nab
0λ;h′ such that

Z(G[h];a,b)
� =

∑
h′

∑
λ∈Â[h′ ]

Nab
0λ;h′ Z(Â[h′ ];0,λ)

� . (3.1)

Denote by Tr(a,b) the trace subject to the boundary conditions (a, b). The Markov trace is
defined for any operator Y on the Hilbert space of a model based on the graph G by

Tr(ν)σ1
Y

def=
∑
σL

ψ(ν)
σL

ψ
(ν)
σ1

Tr
(σ1,σL)

Y

≡
∑

σ2,...,σL

ψ(ν)
σL

ψ
(ν)
σ1

〈σ1, . . . , σL|Y|σ1, . . . , σL〉 (3.2)

where the {ψ∼(µ)|µ ∈ v∗(G)} are the eigenvectors of the graph G labelled by the exponents of G.
The modified partition function is defined [23] in terms of this trace by

Z [G;ν]
�

def= Tr(ν)a T M

≡
∑
b∈G

ψ
(ν)
b

ψ
(ν)
a

Z(G;a,b)
� . (3.3)

Sochen [23] has demonstrated the remarkable property that this partition function is both
independent of a and that it is graph independent: any two graphs, G1 and G2, sharing the same
exponent ν and highest (Perron–Frobenius) eigenvalue β have identical modified partition
functions on the lattice �, i.e.

Z [G1;ν]
� = Z [G2;ν]

� . (3.4)

The solution to this equation (3.4), with G1 and G2 both chosen to be (non-affine) ADE

graphs with equal Coxeter number, yields the intertwiners between the A-, D- and E-based
models. Although typically no Â graph shares all the exponents of any given D̂ or Ê graph,
the graph independence of (3.3) can still be used to interrelate the affine models as follows.
Let { β(µ) | µ ∈ v∗(G) } denote the eigenvalues of G and let

Z [G[h];ν]
� = f (β, β(ν)) (3.5)

where f is some graph independent function denote the modified partition function for a model
based on the affine graph G with affine Coxeter number h (see [23]). We seek solutions to the
more general equation

Z [G[h];ν]
� =

∑
h′∈Z+

ν′∈Â[h′ ]

Xhν
h′ν ′Z [Â[h′ ];ν ′]

� . (3.6)
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We allow freedom both in the choice of the Â graph (labelled by its Coxeter number h′) and
in the exponent ν ′. Substituting in (3.5) and labelling the eigenvalues of a graph with Coxeter
number k by β

(µ)

[k] , we therefore seek a solution for the Xhν
h′ν ′ such that

f (β[h], β
(ν)
[h] ) =

∑
h′∈Z+

ν′∈Â[h′ ]

Xhν
h′ν ′ f (β[h′], β

(ν ′)
[h′] ). (3.7)

By property (3.4), the unknown function f is identical on each side for any given fixed lattice�.
Given the eigenvalues β[h] and βν

[h] on the left-hand side of (3.7) we can solve the equation

by choosing the eigenvalues {β(ν ′)
[h′] } on the right-hand side appropriately. Examining the general

form of the eigenvaluesβ(µ)

[k] = 2 cos µπ

k
one might naı̈vely attempt to chooseh′ = h and ν ′ = ν.

However, this would require that the exponent set of the graph G[h] be a subset of the exponent
set of the graph Â[h] (i.e. v∗(G[h]) ⊆ v∗(Â[h])) and, as mentioned already, this is not the case
in general. (For example, D̂5 has the odd exponent 3 occurring with multiplicity 2. However,
not only are there no Â-based models with odd exponents, but no exponent of any Â graph
has a multiplicity exceeding 1.) Fortunately we may circumnavigate this inconvenience by
choosing instead h′ = 2h and ν ′ = 2ν, i.e.

Xhν
h′ν ′ = δ2h

h′ δ
2ν
ν ′ . (3.8)

This provides a solution to (3.6). Substituting (3.8) and (3.3) into (3.6) we obtain

∑
b∈G[h]

ψ
(ν)
b

ψ
(ν)
a

Z(G[h];a,b)
� =

∑
d∈Â[2h]

φ
(2ν)
d

φ
(2ν)
c

Z(Â[2h];c,d)
� (3.9)

where the {ψ∼(µ)} are eigenvectors of G[h] and the {φ∼(µ)} eigenvectors of Â[2h]. Both a and c

may be chosen arbitrarily on the respective graphs. Assuming the {ψ∼(µ)} have been chosen to
be an orthonormal set, this is inverted to yield

Z(G[h];a,b)
� =

∑
λ∈Â[2h]

{ ∑
µ∈v∗(G)

φ
(2µ)
λ

φ
(2µ)
0

ψ(µ)∗
a ψ

(µ)

b

}
Z(Â[2h];0,λ)
� (3.10)

where we set c = 0 (the affine node) without loss of generality. This is of the form (3.1) with

Nab
0λ;h′ = δh′,2h N

ab
λ (3.11)

and

Nab
λ ≡

∑
µ∈v∗(G)

φ
(2µ)
λ

φ
(2µ)
0

ψ(µ)∗
a ψ

(µ)

b . (3.12)

We remark that although complete freedom was permitted in the Â models appearing in
equations (3.1), (3.10) demonstrates that the even cycles provide a basis set from which all the
other models may be constructed.

Equation (3.11), together with (3.12) clearly provide a solution to the decomposition (3.1)
but not necessarily the only one. In general there are a number of different possible solutions.
However, any non-trivial solution is suitable for our purposes and we do not investigate other
possibilities here.

The coefficients (3.12) are the analogues of the classical intertwiners

V λ
ab ≡

∑
µ∈v∗(G)

φ
(µ)
λ

φ
(µ)

1

ψ(µ)∗
a ψ

(µ)

b . (3.13)
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They possess a similar algebraic form and play a similar role. They differ immediately chiefly in
that they relate a model with affine Coxeter number h to a model with affine Coxeter number 2h
and even interrelate Â models! In contrast, intertwiners interrelate classical models with the
Coxeter number preserved in the relation.

It is certainly tempting, given the form φ
(µ)

[h]ε = cos µπε

h
for the eigenvectors of the Â[h]

graph, to identify the coefficients (3.12) with the classical intertwiners (3.13). Denote by
square parentheses the Coxeter number of the graph to which a vector refers. Then, naı̈vely

φ
(2µ)
[2h]λ

φ
(2µ)
[2h]0

≡ φ
(µ)

[h]λ

φ
(µ)

[h]0

. (3.14)

However the terms on the right-hand side of this equality are not defined unlessµ is even (i.e. an
exponent of the Â graph); the more general summation over the full exponent set of the graph G
implies that this is not always the case. Furthermore, upon examination, the coefficients (3.12)
appear to be both half-integral and of either sign, properties not shared by (3.13).

We remark that, for the D̂ and Ê cases, the coefficient Nab
λ of (3.12) will be zero if the

Z2-parity of the length of the path between a and b on G[h] is not the same as the parity of
the path between 0 and λ on Â[2h]. The argument is quite complicated and we do not repeat
it here (it is detailed in full in [26]). Thus if the original model G[h] has even (odd) boundary
conditions (i.e. the path length between a and b is even (odd)) then the Â-models onto which
it decomposes will also have strictly even (odd) boundary conditions.

4. A simple form for the partition functions

While it is possible at this stage to calculate the intertwiners (3.12) and thereby the partition
functions, we shall instead show that the partition functions may be unified into a single simple
form. For the explicit calculation of the intertwiners and from these the partition functions,
the interested reader is referred elsewhere [26].

It has been noted (see e.g. [8] or [9]) that the intertwiners (3.13) interrelating the classical
(i.e. non-affine) Pasquier models may be written as Chebychev polynomials of the second kind.
These polynomials { U (n)(x) | n ∈ Z } are defined by the recursion relation

U (n)(x) = x U (n−1)(x) − U (n−2)(x) (4.1)

together with two ‘initial conditions’: the values of two subsequent polynomials in the series.
We are concerned only with the series of polynomials generated by the initial conditions:

U (0)(x) = 1 U (1)(x) = x (4.2)

and we note that this implies that U (−1)(x) = 0. The classical intertwiners (3.13) may be
written

V λ
ab ≡ U (λ−1)

ab (G). (4.3)

We propose the same form for the affine intertwiners (3.12). We prove that this is indeed the
case now.

Lemma 1. The coefficient �ε
n ≡ �

(Â[2h];0,ε)
n of χn2

4
(q) in the expansion (1.1) of the partition

function of the model (Â[2h]; 0, ε) is given by

�ε
n = U (n)

0ε (Â[2h]). (4.4)

In other words, it is given by the nth Chebychev polynomial of the second kind satisfying
U (0)(Â) = I and U (1)(Â) = Â.
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Proof. The proof is by induction on the variable n.
We first establish that the initial conditions (4.2) for the Chebychev recursion relation are

satisfied. We observe, directly from (2.12), that

�ε
0 = δε0 = U (0)

0ε (Â[2h]) (4.5)

and

�ε
1 = δε1 + δε2h−1 = U (1)

0ε (Â[2h]) (4.6)

as required.
Having established that the initial conditions are satisfied, we now examine the recursion

relation (4.1). Assume that ∃N ∈ Z
+ such that ∀2 � n < N that (4.4) holds. Then

[U (N−1)(Â[2h])Â[2h] − U (N−2)(Â[2h])]0ε =
∑

λ∈Â[2h]

�λ
N−1Âλε − �ε

N−2

= �ε−1
N−1 + �ε+1

N−1 − �ε
N−2 (4.7)

using the induction hypothesis. Note that, as defined in section 2, the �ε
n have a period 2h in

the variable ε, so that addition and subtraction in this variable (such as in (4.7)) are understood
to be taken modulo 2h.

The right-hand side of (4.7) will be equal to the required �ε
N iff

�ε−1
N−1 + �ε+1

N−1 = �ε
N + �ε

N−2. (4.8)

This equation is identically true∀N replaced withn > 2 as a detailed analysis of the coefficients
�ε

n shows. We examine a typical grid of values �ε
n (given by equation (2.12)), as in figure 2.

Fixing arbitrarily, the values of ε and n we see that �ε
n takes the value, m say, with coordinates

ε and n in the grid, �ε
n−2 takes the values two spaces to the left (or ‘west’) of this value, �ε−1

n−1

takes the value ‘northwest’ and �ε+1
n−1 the value ‘southwest’. Due to the periodicity of the

variable ε and the ‘embedded-diamond’-like pattern the numbers �ε
n follow (for any value of

even h), one of the following is always the case.

(i) �ε
n = �ε

n−2 = �ε−1
n−1 = �ε+1

n−1 = m

(ii) �ε
n = �ε−1

n−1 = m �ε+1
n−1 = �ε

n−2 = m − 1
(iii) �ε

n = �ε+1
n−1 = m �ε−1

n−1 = �ε
n−2 = m − 1

(iv) �ε
n = m �ε

n−2 = m − 2 �ε−1
n−1 = �ε+1

n−1 = m − 1

with m some positive integer and in each such case, the identity (4.8) holds.
This concludes the proof. �

Theorem 2. The coefficients of the Virasoro characters in the expansion (1.1) for all the affine
models are given by the Chebychev polynomials of equation (4.1). In other words∑

µ∈v∗(G)
ε∈Â[2h]

φ(2µ)
ε

φ
(2µ)
0

ψ(µ)∗
a ψ

(µ)

b �ε
n = U (n)

ab (G). (4.9)

Here U (n)(G) denotes the Chebychev polynomial of the second kind satisfying U (0)(G) = I and

U (1)(G) = G, and �ε
n again denotes the coefficient �

(Â[2h];0,ε)
n .

Proof. This follows by induction on n using lemma 1, the eigenvalue property

β
(2µ)
[2h] = β

(µ)

[h] (4.10)
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Figure 2. The coefficients �n,ε for the model Â5. The multiples of n = h ≡ 6 are highlighted in
bold. Due to ‘parity constraints’, every second value is automatically zero and these values have
been left blank for clarity. The values in the figure are ‘coloured’ alternately bold and normal to
emphasize the ‘embedded-diamond’-like pattern of the numbers. Note that the figure is periodic in
the variable ε (see text) and that n takes values from 0 to ∞. This same basic pattern of numbers
occurs for each of the Z2-colourable Â-based models.

and the identity∑
λ

Â[h]ελ F (λ) = F( ε − 1 (mod h)) + F(ε + 1 (mod h)). (4.11)

�

Thus we arrive at the following general form for the partition functions of each of the
affine Pasquier models on the cylinder:

Z(G;a,b)(q) =
∞∑
n=0

χn2
4
(q)U (n)

ab (G). (4.12)

5. The role of Coxeter geometry

We now establish the role played in the partition functions by the Steinberg-ordered affine
Coxeter element defined in section 1 (equation (1.2)). Given the definition of this Coxeter
element, we exclude the models based on the odd cycles Â[2h−1] from our analysis.

The Coxeter elements associated with any classical algebra are known to be mutually
conjugate and therefore possess identical spectra [14]. The question of conjugacy of the affine
Coxeter elements was addressed by Berman et al [1] and also by Coleman [3]. In the case
of the affine tree graphs, i.e. the D̂- and Ê-cases, it can be proved that all Coxeter elements
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are conjugate (see also [14]). Since there is no special choice of Coxeter element, we choose
the most convenient example to manipulate. However, in the case of the cycles, the Â-graphs,
the Coxeter elements do fall into a number of distinct spectral classes. Indeed, the Coxeter
elements associated with the graph Ân−1 fall into [n/2] spectral classes. In particular they do
not belong all to a single conjugacy class. Regardless, we will find the affine generalization
of the Steinberg-ordered Coxeter element to be the most useful even in this case. It possesses
the property of being a representative of the largest spectral class. When n is even, this largest
spectral class is unique and might be taken to define a natural choice of sorts although we do
not make use of this property. In any case, we remark that any Coxeter element and its inverse
both belong to the same spectral class.

Let ĝ denote an affine Kac–Moody algebra with Coxeter–Dynkin diagram G (with l + 1
nodes). Let g denote its horizontal subalgebra. We denote by � ≡ { αa | a ∈ 0, 1, . . . , l } the
set of simple roots with α0 the affine root and by {ρa |a ∈ 0, 1, . . . , l } the basis of fundamental
weights. We denote by σa the Weyl reflection defined by αa so that

λ �→ σαλ
def= λ − 〈λ , α∨〉α (5.1)

where 〈 , 〉 denotes the inner (scalar) product within ĥ∗ and α∨ ≡ 2 α/〈α , α〉 the coroot of α.
The behaviour of the weights under Weyl reflections is given by

σaρb = ρb − δab αb (5.2)

as the weights and the coroots are dual. We recall (see e.g. [10]) that the roots of an affine
Kac–Moody algebra may be written in the form ( α , k , d ) where α is a root of g and k and d

are respectively the components w.r.t. the centre and derivation of ĝ. Denote the roots of ĝ by
6̂. A subset of 6̂ may be identified with the root system 6 of g by

( α , 0 , 0 ) ≡ α. (5.3)

The positive roots 6̂+ of ĝ are

6̂+ def= {α = ( α , 0 , n ) ∈ 6̂|n > 0 or n = 0, α ∈ 6
+} (5.4)

and the negative roots 6̂− ≡ 6̂ \ 6̂+. We use the notation α > 0 for positive roots and α < 0
for negative roots. Given the choice (5.4), simple roots exist and are

αi = ( αi , 0 , 0 ) = αi for i = 1, . . . , l (5.5)

where � ≡ { αa | a ∈ G \ {0} } are the simple roots of 6; together with

α0 = (−θ , 0 , 1 ) = δ − θ (5.6)

θ is the highest root of g and δ ≡ ( 0 , 0 , 1 ). Note that δ is an imaginary or lightlike root and
is invariant under the action of Ŵ .

If we regard G as an operator on the root space ĥ∗ of ĝ, i.e.

G : ĥ∗ → ĥ∗ αa �→
∑
b∈G

Gab αb (5.7)

then it may be shown that the following holds.

Lemma 3 (Kostant [17]). The action of G regarded as an operator on ĥ∗ is

G = ω1 + ω2 (5.8)

where ω1 and ω2 are the involutions defined in section 1.
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This (5.8) may be substituted into (4.12) to obtain a geometric expression for the partition
functions. Performing the calculation, however, it is not immediately obvious what sort of
relationship we actually have. Instead we proceed in a different way.

Choose the following as orbit representatives for the Steinberg-ordered Coxeter elementω
defined in section 1:

φa
def= (1 − ω−1)ρa. (5.9)

This choice is a generalization of the representatives chosen by Kostant [16] for the orbit
representatives of the non-affine (Steinberg-ordered) Coxeter element. As it is a generalization
it is easy to see that this set is also linearly independent. Using (5.2) and (1.2), one can show

φa =
{
αa if αa ∈ �1

ω1αa if αa ∈ �2.
(5.10)

Furthermore, their orbits are distinct; indeed if one supposes [5] that φb lies in the Coxeter
orbit of another, i.e. ωpφa = φb for some values of a, b and p, then, by (5.9),

ωpρa = ρb. (5.11)

This cannot be true as all fundamental weights are dominant highest weights and are therefore
not related to each other by any Weyl element [13]. The representatives (5.9) are uniquely
characterized as the positive roots which become negative (i.e. whose images are negative
roots) under the action of the (affine) Coxeter element ω. Now the following holds:

Proposition 4. The action of the operator G (see equation (5.7)) on the orbit
representatives R̂ ≡ { φa | a ∈ 0, 1, . . . , l }, is given by

∑
c∈G

φc Gcb =
{
(1 + ω−1) φb if αb ∈ �1

(1 + ω) φb if αb ∈ �2.
(5.12)

Proof. The proof is by simple calculation using definition (5.9), equation (5.2) and lemma 3. �
In analogy with [6], we introduce the function

va ≡
{

0 if αa ∈ �2

1 if αa ∈ �1
(5.13)

and define vab ≡ va − vb.
We now demonstrate the connection between the Chebychev polynomials and the affine

Coxeter element. Dorey [6] demonstrated using explicit forms for the eigenvectors in the
intertwiners (3.13) that the partition functions of the classical Pasquier models could be
expressed as

Z(G;a,b)(q) =
∑

ω−pφb∈6+

χc
1,2p+1+vab (q) (ρa , ω

−pφ
∨
b ). (5.14)

The quantities ρa , ω and φb refer to the root system and Weyl group of a classical Lie algebra g
with adjacency matrix G and Coxeter number h; the scalar product ( , ) is the usual Euclidean
bilinear form and the Virasoro characters χc

a,b(q) refer to representations of the conformal
algebra with central charge c = 1 − 6

h(h−1)
< 1. As remarked upon earlier (demonstrated

in the affine case), intertwiners and the Chebychev polynomials are related. Thus we are led
to conjecture a similar form for the affine partition functions by equating the natural affine
generalization of the inner product appearing in (5.14) to the Chebychev polynomials of the
affine adjacency matrices.
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Theorem 5. Let vab be defined as above (5.13). If G is the Coxeter–Dynkin diagram of the
Kac–Moody algebra ĝ and 〈 , 〉 the affine bilinear form (scalar product) on the maximal Cartan
subalgebra ĥ of ĝ; then

U (2p+vab)
ab (G) = 〈ρa , ω−pφ∨

b 〉 (5.15)

ω denotes the (Steinberg-ordered affine) Coxeter element defined in equation (1.2).

Proof. The proof is by induction on the variable N in U (N)(G). The proof splits into four
subproofs corresponding to the four different ways of assigning the roots αa and αb amongst
the sets �1 and �2. In each case we first check that the form 〈ρa , ω−pφ∨

b 〉 reproduces the
correct initial conditions (4.1), i.e. U (0)(G) = I and U (1)(G) = G. This is done using the
duality between the weights and the (co-) roots and the fact that the affine scalar product 〈 , 〉
is normal, i.e.

〈ηλ , ηλ′〉 = 〈λ , λ′〉 ∀η ∈ Ŵ λ, λ′ ∈ ĥ∗. (5.16)

The induction hypothesis in each case may be shown using repeated use of proposition 4. The
full details of the proof may be found in [26]. �

Thus we rewrite equation (4.12) as

Z(G;a,b) =
∞∑

p=p′
χ (2p+vab)

2

4

(q)〈ρa , ω−pφ∨
b 〉 (5.17)

with

p′ =
{

0 if vab = 0 or 1

1 if vab = −1.
(5.18)

This expresses the affine partition functions in terms of the affine Coxeter element. Note
that the summation automatically excludes those terms which are zero due to the requirement
that |a − b| and n, now replaced by 2p + vab, be both even or both odd.

We remark that [6] demonstrated the form (5.14) for the classical models by an entirely
different method. We duplicate this result using the method just described by recalling that
the intertwiner V λ

ab relating the G = D,E models to an A model is equivalent to a Chebychev
polynomial by equation (4.3). Theorem 5 holds in the classical case also once one replaces the
affine scalar product 〈 , 〉 with the usual one ( , ) and the affine Coxeter transformation, weights
and orbit representatives with their classical analogues. Thus we may equate the intertwiner
with a geometric expression. The result (5.14) follows directly from [22]

Z(G;a,b)(q) =
h−1∑
λ=1

χc
1,λ(q) V

λ
ab. (5.19)

6. Geometrical consequences

In analogy with [6], we may attempt to construct invariant subspaces under the action of ω as
follows.

Define

α
(µ)

i

def=
∑

a
such that
αa∈�i

ψ(µ)
a αa for i = 1, 2. (6.1)
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These vectors would appear to possess the properties

ωiα
(µ)

i = −α
(µ)

i

ωjα
(µ)

i = α
(µ)

i + β(µ)α
(µ)

j for i �= j
(6.2)

so that V (µ) def= span{α(µ)

1 , α
(µ)

2 } is closed.
Unfortunately, for some values of µ and i, such vectors (6.1) may be identically zero;

this can be verified by explicit calculation. However, for µ = 0 it is easy to see that the
properties of the Perron–Frobenius eigenvector ensure that α(0)

1 and α
(0)
2 are both non-zero,

distinct and linearly independent. Hence the µ = 0 invariant subspace exists. Choose the
Perron–Frobenius eigenvector to have all coefficients positive. We change notation and write

α(i) =
∑

a
such that
αa∈�i

ψ(0)
a αa (6.3)

so that

ωi α
(j) =

{ −α(j) if i = j

α(j) + 2 α(i) if i �= j .
(6.4)

We also define the weights

ρ(i) =
∑

a
such that
αa∈�i

ψ(0)
a ρa. (6.5)

Their action upon the {α(i)} is

〈ρ(i) , α(j)∨〉 = 1
2δ

ij (6.6)

and, upon roots in general, their action is to project onto the spaces span{α(1)} and span{α(2)}
respectively. Equation (6.6) indicates that 2 ρ(i) is the dual of α(i)∨; therefore the projection
operator J onto the space V ≡ span{α(1), α(2)} is given by

J λ ≡ 2〈ρ(1) , λ∨〉α(1) + 2〈ρ(2) , λ∨〉α(2) (6.7)

where λ ≡ ( λ , 0 , n ) is any root. In particular J 2 = J . We let α ≡ α(1) + α(2) = ψ
(0)
0 δ and

ρ ≡ ρ(1) + ρ(2) so that 〈ρ , α〉 = 1.
We remark that ρ, as defined, is a positive integer sum over the weights { ρa | a ∈ G }.

Using the fact that any root may be written as a positive or negative integer sum of the simple
roots, we see that, by analogy with [6],

λ is a positive root

⇔ 〈ρa , λ∨〉 > 0 for any a

⇔ 〈ρ , λ∨〉 > 0.

(6.8)

Thus we have the following:

Lemma 6. Any root of 6̂ is a positive root iff the scalar product of its coroot with ρ is positive;
i.e.

λ ≡ ( λ , 0 , n ) ∈ 6̂+ iff 〈ρ , λ∨〉 > 0. (6.9)

The following result is perhaps obvious; however, we state it for clarity.

Proposition 7. The projection J commutes with the Weyl group operators ω1 and ω2; and
hence with the Coxeter element. That is

[J , ωi]|6̂ = 0 for i = 1, 2 (6.10)

insofar as they act upon the roots 6̂.
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Proof. The simple roots �̂ provide a basis for 6̂. Therefore one need only examine to see
whether Jωiαa = ωiJ αa for each a and i. This follows easily using the properties (6.4) and
the definition (6.7). �

For convenience, for any operator Y, let

[[Y]]b

def=
{

I if αb ∈ �1

Y if αb ∈ �2.
(6.11)

We also define

P(a)
def=

{
1 if αa ∈ �1

2 if αa ∈ �2.
(6.12)

Theorem 8. For all a, b ∈ G and p ∈ Z
+,

〈ρa , ω−pφ∨
b 〉 � 0. (6.13)

Proof. By lemma 6, we need only establish that 〈ρ , ω−pφb〉 > 0.
By proposition 7:

Jω−pφb = ω−p [[ω1]]
b
J αb

= 2〈ρ(1) , α∨
b 〉ω−p [[ω1]]

b
α(1) + 2〈ρ(2) , α∨

b 〉ω−p [[ω1]]
b
α(2)

= 2〈ρ(P (b)) , α∨
b 〉ω−p [[ω1]]

b
α(P (b)) (6.14)

where we make use of the fact that 〈ρ(i) , α∨
b 〉 = 0 unless αb ∈ �i . Thus we need only examine

the Coxeter orbits of α(1) and ω1 α
(2) ≡ 2 α(1) + α(2).

We see from (6.4) that the application of ω−1 to (n) α(1) + (n− 1) α(2) yields (n+ 2) α(1) +
(n + 1) α(2); i.e. n is replaced by n + 2. The roots of both orbits follow this form. Hence, as J
projects onto the invariant space V ,

〈ρ , ω−pφ∨
b 〉 = 〈ρ , Jω−pφ∨

b 〉

=
{

2〈ρ(1) , α∨
b 〉(2p + 1) when αb ∈ �1

2〈ρ(2) , α∨
b 〉(2p + 3) when αb ∈ �2.

(6.15)

This may be rewritten as

〈ρ , ω−pφ∨
b 〉 = 2〈ρ , α∨

b 〉(2p + 1 + 2 δ2,P (b)). (6.16)

The scalar product appearing on the RHS clearly exceeds zero as αb is a simple root and hence
a positive root. The remaining factor is positive for all p � 0.

This completes the proof. �

Thus the coefficients �(G;a,b)
n appearing in the expression (1.1) are all positive. That they

are integers follows trivially from the duality of the weights and coroots together with the fact
that the set 6̂ is closed under the action of Ŵ .

We mention as an aside that it might be interesting to investigate the relationship, if any,
between the projection J and the defect map investigated by Berman et al [1].

Much of the structure of an affine algebra ĝ is related to the underlying structure of the
horizontal subalgebra g. If we separate out the translation part of the action from the affine
Coxeter element we should be able to see some of the structure of this subalgebra. Indeed,
consider the translation t defined by

t
def= σ0σθ (6.17)
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where θ is the highest root of g. The action of t on any λ ≡ ( λ , k , d ) is

t λ =
(
λ − k θ

∨
, k, d − (λ , θ

∨
) − 2

(θ , θ)
k

)
(6.18)

and in particular, for any root α ≡ ( α , 0 , n ),

tα = ( α , 0 , n − (α , θ
∨
) )

= α − (α , θ
∨
)δ (6.19)

i.e. it ‘translates’ any real root by −(α , θ
∨
) in the lightlike direction. As σ0 = t σθ we may

regard Ŵ as being generated by the set

{t} ∪ { σa | a = 1, . . . , l }. (6.20)

Ŵ is the smallest group containing both the (classical) Weyl group W of g and the affine
translation t. Define ω̌2 by the requirement

ω2 = t ω̌2 = ω̌2 t
−1 (6.21)

so that ω̌2 is ω2 with the reflection σ0 replaced with σθ . Define

ω̌1
def= ω1 and ω̌

def= ω̌2 ω̌1 (6.22)

so that ω ≡ t ω̌. Note in particular that ω̌, ω̌1 and ω̌2 are all elements of the Weyl group W

of the horizontal subalgebra g and are therefore constrained to be of finite order and to act
trivially on the lightlike components of the roots of ĝ.

We may use this ‘Euclidean Coxeter element’ ω̌ to examine separately the action of ω on
the horizontal and lightlike parts of the orbit representatives. Consider

ω−1φb = ω−1( φb , 0 , δ0b )

= ω̌−1t( φb , 0 , δ0b )

= ω̌−1( φb , 0 , δ0b + (φb , θ
∨
) )

= ( ω̌−1φb , 0 , δ0b + (φb , θ
∨
) ). (6.23)

Iterating, for p � 0,

ω−pφb =
(
ω̌−pφb, 0, δ0b +

p−1∑
p′=0

(ω̌−p′
φb , θ

∨
)

)
. (6.24)

As ω̌ has period h (this is the definition of the affine Coxeter number, see [25] and [1]), we
may write

ω−(qh+r)φb =
(
ω̌−rφb, 0, δ0b +

r−1∑
r ′=0

(ω̌−r ′
φb , θ

∨
) + q

h−1∑
r ′=0

(ω̌−r ′
φb , θ

∨
)

)
(6.25)

where p = qh + r and r < h by the usual division algorithm. Thus to calculate the
coefficient 〈ρa , ω−pφb〉 we need only examine the behaviour of the ‘Euclidean projection’ of
the Coxeter orbits onto 6, the root system of g. In particular, due to the periodicity of ω̌, we
find that one can calculate any coefficient from the knowledge of the h(l + 1) vectors

{ω̌−rφb|r ∈ Z, 0 � r � h − 1; b ∈ G} (6.26)

together with their inner products with the (dual of the) highest root θ
∨

; in particular, the sums{
<

(r)
b

def=
r−1∑
r ′=0

(ω̌−r ′
φb , θ

∨
)

∣∣∣∣r ∈ Z, 0 � r � h − 1

}
(6.27)
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determine the action of the translation t which is localized to the lightlike components
of ω−pφb. The action of ω is thus periodic on the horizontal components of the roots but
translates the lightlike components. Note that it is the orbits 〈ω̌〉φb of the Euclidean Coxeter
element which appear in these quantities and not the orbits of the Coxeter element ω of the
algebrag. However it is interesting to see that the entire structure of the affine Coxeter orbits can
be determined by examining the orbits of ω̌ alone. These, being of finite cardinality, allow one
to determine the entire partition function (5.17) from a finite number of calculations. Indeed
this method of calculation was checked using Mathematica. The correct partition functions
are obtained.

7. Concluding remarks

We have shown that the partition functions of the (Z2-colourable) affine Pasquier models may
be expressed in terms of the orbit structure of the affine Coxeter element (see equation (5.17)).
We have thus generalized the geometric expression of [6] from c < 1 conformal models
to c = 1.

In particular we have found expressions, (4.12) and (5.17) (the former valid for all the
models), for the partition functions of the affine Pasquier models with fixed boundary conditions
on the cylinder, which until now had been missing from the literature. The interested reader
may like to verify that, in the specific case of the four-state Potts model with free boundary
conditions, the partition function implied by (4.12) or (5.17) agrees with that found in [22].

The geometric expression (5.17), whilst unlike (4.12) it is not manifestly symmetric
in the boundary conditions, permits an easy verification of the positive integrality of the
coefficients �(G;a,b) in equation (1.1). We are also able to observe that the physics of these
models is expressible in terms of the physics of the corresponding non-affine models albeit
in a non-trivial way. Indeed the quantities ω̌−rφb and <

(r)
b are determined wholly within the

structure of the Lie algebra g without reference to the peculiarities of the greater Kac–Moody
algebra ĝ. These quantities provide one with an exceptionally quick (i.e. finite) method of
evaluating the partition function of any affine model. What initially appears to be an infinite
sequence may in fact be reduced to a finite number of evaluations by equation (6.25). It
might be possible that this can be used as a mechanism to collect the degenerate c = 1
Virasoro characters in the partition functions in such a way as to observe the action of higher
symmetries, such as supersymmetry or those associated with W -algebras, in the physics of
these models. We remark that neither of these results is apparent from the purely algebraic
expression (4.12).

Most importantly, the geometric result (5.17) and its consequences lend support to the
idea that the geometry of root systems has a more general role within conformal field theories
and related structures. This idea has been investigated for S-matrices by Dorey in [4] and [5];
and for more general graph-lattice models by Zuber [27].
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